Программа рассчитана на обучение науке о данных с нуля. Вы начнете с SQL и Python, получите необходимые знания по математике, статистике и теории вероятности, освоите технологии ML и сможете применить их на практике.
Вы программируете на Python и столкнулись с задачами, в которых необходимо задействовать алгоритмы машинного и глубокого обучения. На курсе вы освоите продвинутое машинное обучение, создадите и обучите рекомендательную систему и несколько нейронных сетей.
Вы узнаете, какие задачи решает машинное обучение, примените основные методы предобработки данных. Научитесь обучать модели, делать прогнозы и применять это для решения бизнес-задач.
Наши курсы ориентированы на тех, кто работает и хочет сам регулировать нагрузку. Занимайтесь без отрыва от работы и выделяйте на учебу столько времени, сколько есть прямо сейчас (15 минут или 2 часа в день).
Теория разбита на короткие блоки, после которых обязательно идет практика.
Вы смотрите короткие видео, изучаете текстовые материалы и приступаете к заданиям, чтобы закрепить знания.
Для развития навыков у нас есть 5 видов практики: тренажеры, тесты, домашние задания, проекты и хакатоны. Разнообразие форматов помогает усваивать знания максимально эффективно.
Все менторы — опытные практики из IT-индустрии. Они дают качественную обратную связь на задания, отвечают на вопросы и помогают студенту достичь своих целей во время обучения. Выпускники оценивают менторскую поддержку на 9,1 балла из 10.
Координаторы постоянно на связи, чтобы решить любой организационный вопрос. Их задача — мотивировать студентов и помочь пройти курс до конца.
Вы тренируетесь на кейсах компаний, а также делаете проекты для реальных заказчиков в команде. Помогаем оформить резюме и подготовиться к собеседованиям.
Машинное обучение — одна из самых быстрорастущих областей знаний. Инвестиции в машинное обучение вырастут в 5#nbspраз в течение ближайших 3#nbspлет. И Deep Learning — это передовая данной индустрии.
Вы сможете пройти этот курс, если у вас есть базовое понимание машинного обучения и знание языка Python. В рамках курса вы пройдете полный путь от аренды GPU-сервера, который подходит для Deep Learning, до создания полноценной рабочей модели для компьютерного зрения, анализа естественного языка и рекомендательных систем.
Курс познакомит вас с основными библиотеками для Deep Learning, такими как TensorFlow, Keras и другими.
Для специалистов в сфере Machine Learning, которые:
Хотят специализироваться на Компьютерном зрении
Уже используют практики Deep Learning и хотят расширить и систематизировать знания
Курс позволит переключиться с классических задач машинного обучения, таких как кредитный скоринг, оптимизация CTR, детекция фрода и т.д, и попасть в развивающуюся область Data Science, где сейчас происходит все самое интересное и открываются новые карьерные горизонты. Обучение даст вам необходимые компетенции, чтобы претендовать на специальности, требующие профессиональных навыков разработки систем компьютерного зрения. В разных компаниях специальности называются по-разному, самые распространенные варианты: Deep learning engineer, Computer Vision Engineer, AI Research Engineer [Computer Vision, Machine Learning], программист-исследователь, Deep Learning/Computer Vision.
Обучение проходит в формате вебинаров (онлайн). Слушателям предлагаются к выполнению домашние задания, которые позволят применять на практике полученные во время вебинаров знания. По каждому домашнему заданию преподаватель дает развернутый фидбек. Преподаватель находится в едином коммуникационном пространстве с группой на протяжении всего курса, т. е. в процессе обучения слушатель может задавать преподавателю уточняющие вопросы по материалам лекций и домашних заданий.